EN | DE

Prof. Neva Caliskan

Unsere Forschung

Neva Caliskans Forschungsgruppe untersuchte die Rolle von RNA-Molekülen bei nicht-kanonischen Translationsereignissen, die das Zusammenspiel zwischen Wirt und Pathogen beeinflussen können. Ihr Ziel war es, therapeutische RNA-Protein-Komplexe als neue Ansatzpunkte im Kampf gegen Infektionen zu beleuchten.

In Viren oder zellulären Genen verschlüsselte RNAs können während der Translation auf alternative Weise gelesen werden, was als Rekodierung bezeichnet wird. Es ist jedoch unklar, wie genau die Rekodierung durch den Wirt reguliert wird. Ein genaues Verständnis der Rekodierung und ihrer Regulation kann daher der Schlüssel zur Entwicklung neuer RNA-basierter Therapien im Kampf gegen Infektionen sein.

In diesem Zusammenhang untersuchte Neva Caliskans Gruppe die Funktion und Dynamik von RNA-Molekülen und wie sie mit Faktoren mit Trans-Wirkung zusammenspielen. Die Wissenschaftler:innen arbeiteten dafür mit Viren wie Corona- und Retroviren, bei denen bekannt ist, dass sie für ihre Replikation auf Rekodierung angewiesen sind. Gemeinsam entwickelten sie Methoden, um RNA-Komplexe und Translation in bisher ungekannter Detailtreue zu erforschen.

Die Gruppe nutzte ein stark interdisziplinäres Toolset, etwa RNA-Antisense-Reinigung und Massenspektrometrie, um RNA-Interaktionspartner zu erkennen und zelluläre Assays um molekulare Details zu untersuchen. Assays für Einzelmoleküle oder Molekülgruppen wie optische Pinzetten spielen für die Erforschung von RNA-Komplexen eine wichtige Rolle. Um die Entwicklung RNA-basierter Therapien voranzubringen, war es das Ziel der Wissenschaftler:innen, besser zu verstehen, wie RNA-Strukturelemente mit anderen Faktoren in der Zelle zusammenwirken, um die Art und Weise zu regulieren, wie mRNA von den Ribosomen gelesen wird.

Team-Mitglieder

Neva Caliskan

Prof. Neva Caliskan

Gruppenleiterin

Publikationen

2024

2023

Cis-mediated interactions of the SARS-CoV-2 frameshift RNA alter its conformations and affect function

Pekarek L, Zimmer MM, Gribling-Burrer AS, Buck S, Smyth RP, Caliskan N (2023)

Nucleic Acids Research 51 (2): 728–743

SND1 binds SARS-CoV-2 negative-sense RNA and promotes viral RNA synthesis through NSP9

Schmidt N, Ganskih S, Wei Y, Gabel A, Zielinski S, Keshishian H, Lareau CA, Zimmermann L, Makroczyova J, Pearce C, …, Erhard F, Munschauer M (2023)

Cell 186 (22): 4834-4850.e23

Mouse Liver-Expressed Shiftless Is an Evolutionarily Conserved Antiviral Effector Restricting Human and Murine Hepaciviruses

Zhang Y, Kinast V, Sheldon J, Frericks N, Todt D, Zimmer M, Caliskan N, Brown RJP, Steinmann E, Pietschmann T (2023)

Microbiology Spectrum 11 (4): e0128423

2022

Short- and long-range interactions in the HIV-1 5' UTR regulate genome dimerization and packaging

Ye L, Gribling-Burrer AS, Bohn P, Kibe A, Börtlein C, Ambi UB, Ahmad S, Olguin-Nava M, Smith M, Caliskan N, von Kleist M, Smyth RP (2022)

Nature Structural & Molecular Biology 29 (4): 306-319

Spacer prioritization in CRISPR-Cas9 immunity is enabled by the leader RNA

Liao C, Sharma S, Svensson SL, Kibe A, Weinberg Z, Alkhnbashi OS, Bischler T, Backofen R, Caliskan N, Sharma CM, Beisel CL (2022)

Nature Microbiology 7 (4): 530-541

Editorial: mRNA Translational Control as a Mechanism of Post-transcriptional Gene Regulation

Kiss DL, Vasudevan D, Ho CK, Caliskan N (2022)

Frontiers in Molecular Biosciences 9: 947516

POTATO: Automated pipeline for batch analysis of optical tweezers data

Buck S, Pekarek L, Caliskan N (2022)

Biophysical Journal 121 (15): 2830-2839

Insights from structural studies of the cardiovirus 2A protein

Caliskan N, Hill CH (2022)

Bioscience Reports 42 (1): BSR20210406

Optical Tweezers to Study RNA-Protein Interactions in Translation Regulation

Pekarek L, Buck S, Caliskan N (2022)

Journal of Visualized Experiments (180)

Thinking Outside the Frame: Impacting Genomes Capacity by Programmed Ribosomal Frameshifting

Riegger RJ, Caliskan N (2022)

Frontiers in Molecular Biosciences 9: 842261

2021

Structural and molecular basis for Cardiovirus 2A protein as a viral gene expression switch

Hill CH, Pekarek L, Napthine S, Kibe A, Firth AE, Graham SC, Caliskan N, Brierley I (2021)

Nature Communications 12 (1): 7166

Investigating molecular mechanisms of 2A-stimulated ribosomal pausing and frameshifting in Theilovirus

Hill CH, Cook GM, Napthine S, Kibe A, Brown K, Caliskan N, Firth AE, Graham SC, Brierley I (2021)

Nucleic Acids Research 49 (20): 11938-11958

The short isoform of the host antiviral protein ZAP acts as an inhibitor of SARS-CoV-2 programmed ribosomal frameshifting

Zimmer MM, Kibe A, Rand U, Pekarek L, Ye L, Buck S, Smyth RP, Cicin-Sain L, Caliskan N (2021)

Nature Communications 12 (1): 7193

2020

The SARS-CoV-2 RNA-protein interactome in infected human cells

Schmidt N, Lareau CA, Keshishian H, Ganskih S, Schneider C, Hennig T, Melanson R, Werner S, Wei Y, Zimmer M, …, Bodem J, Munschauer M (2020)

Nature Microbiology 6 (3): 339-353

2019

Thermodynamic control of -1 programmed ribosomal frameshifting

Bock LV, Caliskan N, Korniy N, Peske F, Rodnina MV, Grubmüller H (2019)

Nature Communications 10: 4598

2018

Small synthetic molecule-stabilized RNA pseudoknot as an activator for -1 ribosomal frameshifting

Matsumoto S, Caliskan N, Rodnina MV, Murata A, Nakatani K (2018)

Nucleic Acids Research 46 (16): 8079-8089

2017

Conditional Switch between Frameshifting Regimes upon Translation of dnaX mRNA

Caliskan N, Wohlgemuth I, Korniy N, Pearson M, Peske F, Rodnina MV (2017)

Molecular Cell 66 (4): 558-567.e4

2016

Choreography of molecular movements during ribosome progression along mRNA

Belardinelli R, Sharma H, Caliskan N, Cunha CE, Peske F, Wintermeyer W, Rodnina MV (2016)

Nature Structural & Molecular Biology 23 (4): 342-8

2015

Changed in translation: mRNA recoding by -1 programmed ribosomal frameshifting

Caliskan N, Peske F, Rodnina MV (2015)

Trends in Biochemical Sciences 40 (5): 265-74

2014

Programmed -1 frameshifting by kinetic partitioning during impeded translocation

Caliskan N, Katunin VI, Belardinelli R, Peske F, Rodnina MV (2014)

Cell 157 (7): 1619-31